Quantcast
Channel: Phys.org news tagged with:hydrogen production
Viewing all 93 articles
Browse latest View live

Dancing 'adatoms' help chemists understand how water molecules split

$
0
0
Single oxygen atoms dancing on a metal oxide slab, glowing brighter here and dimmer there, have helped chemists better understand how water splits into oxygen and hydrogen. In the process, the scientists have visualized a chemical reaction that had previously only been talked about. The new work improves our understanding of the chemistry needed to generate hydrogen fuel from water or to clean contaminated water.

Renewable hydrogen production becomes reality at winery

$
0
0
(PhysOrg.com) -- The first demonstration of a renewable method for hydrogen production from wastewater using a microbial electrolysis system is underway at the Napa Wine Company in Oakville. The refrigerator-sized hydrogen generator will take winery wastewater, and using bacteria and a small amount of electrical energy, convert the organic material into hydrogen, according to a Penn State environmental engineer.

Catalyst could power homes on a bottle of water, produce hydrogen on-site (w/ Video)

$
0
0
(PhysOrg.com) -- With one bottle of drinking water and four hours of sunlight, MIT chemist Dan Nocera claims that he can produce 30 KWh of electricity, which is enough to power an entire household in the developing world. With about three gallons of river water, he could satisfy the daily energy needs of a large American home. The key to these claims is a new, affordable catalyst that uses solar electricity to split water and generate hydrogen.

An uncommon influence for a research paper

$
0
0
(PhysOrg.com) -- An article written in 2004 by a Lehigh engineering professor and his former student has received more citations than any publication in its field, according to a company that analyzes the influence of research papers.

Microbe power as a green means to hydrogen production

$
0
0
Scientists have been hard at work harnessing the power of microbes as an attractive source of clean energy. Now, Biodesign Institute at Arizona State University researcher Dr. Prathap Parameswaran and his colleagues have investigated a means for enhancing the efficiency of clean energy production by using specialized bacteria.

Researchers discover less expensive low-temperature catalyst for hydrogen purification

$
0
0
(PhysOrg.com) -- Engineering researchers from Tufts University, the University of Wisconsin-Madison and Harvard University have demonstrated the low-temperature efficacy of an atomically dispersed platinum catalyst, which could be suitable for on-board hydrogen production in fuel-cell-powered vehicles of the future.

Blocking carbon dioxide fixation in bacteria increases biofuel production

$
0
0
Reducing the ability of certain bacteria to fix carbon dioxide can greatly increase their production of hydrogen gas that can be used as a biofuel. Researchers from the University of Washington, Seattle, report their findings in the current issue of online journal mBio.

A chance discovery may revolutionize hydrogen production

$
0
0
Producing hydrogen in a sustainable way is a challenge and production cost is too high. A team led by EPFL Professor Xile Hu has discovered that a molybdenum based catalyst is produced at room temperature, inexpensive and efficient. The results of the research are published online in Chemical Science Thursday the 14th of April. An international patent based on this discovery has just been filled.

Toward a more efficient use of solar energy

$
0
0
The exploitation and utilization of new energy sources are considered to be among today's major challenges. Solar energy plays a central role, and its direct conversion into chemical energy, for example hydrogen generation by water splitting, is one of its interesting variants. Titanium oxide-based photocatalysis is the presently most efficient, yet little understood conversion process. In cooperation with colleagues from Germany and abroad, scientists of the KIT Institute for Functional Interfaces (IFG) have studied the basic mechanisms of photochemistry by the example of titania and have presented new detailed findings.

Teaching algae to make fuel

$
0
0
Many kinds of algae and cyanobacteria, common water-dwelling microorganisms, are capable of using energy from sunlight to split water molecules and release hydrogen, which holds promise as a clean and carbon-free fuel for the future. One reason this approach hasn’t yet been harnessed for fuel production is that under ordinary circumstances, hydrogen production takes a back seat to the production of compounds that the organisms use to support their own growth.

Researchers decipher the molecular basis of blue-green algae

$
0
0
Under normal conditions, cyanobacteria, also termed blue-green algae, build up energy reserves that allow them to survive under stress such as long periods of darkness. They do this by means of a molecular switch in an enzyme. By removing this switch, it should be possible to use the excess energy of the bacteria for biotechnological purposes such as hydrogen production, without the bacteria suffering.

High-purity hydrogen generated from a single device

$
0
0
(PhysOrg.com) -- There are many ways to generate hydrogen, such as water electrolysis and steam reforming of gas, but the hydrogen produced by these methods tends to be combined with other byproduct and residual gases. For this reason, a second step to purify the hydrogen is usually required after it is produced. Now in a new study, scientists have developed a method for generating hydrogen with a purity of more than 99% within a single membrane, eliminating the need for a separate purification step.

Chemists develop liquid-based hydrogen storage material

$
0
0
University of Oregon chemists have developed a boron-nitrogen-based liquid-phase storage material for hydrogen that works safely at room temperature and is both air- and moisture-stable -- an accomplishment that offers a possible route through current storage and transportation obstacles.

New metal catalyst drives hydrogen fuel reaction forwards and backwards

$
0
0
(PhysOrg.com) -- When it comes to driving hydrogen production, a new catalyst built at Pacific Northwest National Laboratory can do what was previously shown to happen only in nature: store energy in hydrogen and release that energy on demand. This new nickel-based complex drives the reaction but is not consumed by it. While slow, the catalyst wastes little energy. It turns electrons and protons into hydrogen. The hydrogen molecule holds the energy in a very small space until it is needed. The same catalyst then breaks the single bond in the hydrogen molecule, releasing electrons to do work.

High-speed method to aid search for solar energy storage catalysts

$
0
0
Eons ago, nature solved the problem of converting solar energy to fuels by inventing the process of photosynthesis.

New technique controls crystalline structure of titanium dioxide

$
0
0
Researchers from North Carolina State University have developed a new technique for controlling the crystalline structure of titanium dioxide at room temperature. The development should make titanium dioxide more efficient in a range of applications, including photovoltaic cells, hydrogen production, antimicrobial coatings, smart sensors and optical communication technologies.

Finding more efficient catalysts for sunlight-powered hydrogen production

$
0
0
Hydrogen is crucial for the oil-refining industry and the production of essential chemicals such as the ammonia used in fertilizers. Since producing hydrogen is costly, scientists have long searched for alternative, energy-efficient methods to separate hydrogen atoms from abundant sources such as water.

Sustained hydrogen production from cyanobacteria in the presence of oxygen

$
0
0
(Phys.org)—As society's demand for renewable energy continues to grow, hydrogen (H2) is appealing because it's carbon-neutral, portable, clean, and simple. However, producing it inexpensively and in sufficient amounts without using fossil fuels remains a challenge.

A molecular glance on solar water splitting: The hunt for electron holes

$
0
0
Hydrogen production by solar water splitting in photoelectrochemical cells (PEC) has long been considered the holy grail of sustainable energy research. Iron oxide is a promising electrode material. An international team of researchers led by Empa, the Swiss Federal Laboratories for Materials Science and Technology, have now gained in-depth insights into the electronic structure of an iron oxide electrode – while it was in operation. This opens up new possibilities for an affordable hydrogen production from solar energy.

Temporary storage for electrons: Natural method of producing hydrogen

$
0
0
Scientists at the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Ruhr-Universität Bochum (RUB) have found through spectroscopic investigations on a hydrogen-producing enzyme that the environment of the catalytic site acts as an electron reservoir in the enzyme. Thus, it can very efficiently produce hydrogen, which has great potential as a renewable energy source.
Viewing all 93 articles
Browse latest View live




Latest Images